

Image quality of on-board cone-beam CT acquired during VMAT delivery

<u>T Marchant</u>, C Rowbottom, C Moore The Christie NHS Foundation Trust Manchester, UK

Conflict of interest statement

• T Marchant: None

• C Rowbottom: None

• C Moore: None

CBCT during VMAT?

Rotational delivery raises possibility to acquire CBCT concurrently with treatment

- More representative of treated anatomy than pre or post treatment image
- Time saving

BUT

- Potential effects on image quality:
 - Increased x-ray scatter from MV treatment beam
 - Uneven spacing of projection images

Study outline

- Preliminary study to investigate image quality
- CBCT of Rando phantom acquired simultaneously with VMAT delivery (Elekta Synergy*)
- 8MV Prostate VMAT plan (57Gy / 19#), single rotation, 46 Control Points, 517MU, 2.3 mins
- Imaging parameters 120kV, 750 frames, 40mA, 16ms per frame, M20 collimator, Bow-tie filter, 11.5 mGy
- Standard CBCT acquired for comparison, same settings, 650 frames
- Also applied "shading" correction algorithm to CBCT images⁺

*Simultaneous kV and MV not approved for clinical use yet ⁺ Marchant et al 2008 Phys Med Biol **53** p5719

	Axial	Coronal
СТ		
СВСТ		
kV only 650 proj 10 mGy		
CBCT during VMAT 750 proj 11.5 mGy		

	Axial	Coronal
СТ		
СВСТ		
kV only 650 proj 10 mGy With shading		
correction		
CBCT during VMAT	*	
750 proj 11.5 mGy		
With shading correction		

Noise

Standard deviation, averaged over seven uniform regions throughout phantom

- Increased noise in VMAT image
- Shading correction has little effect

Uniformity

Maximum percentage difference between any two of the ROIs

- Both CBCTs much poorer uniformity than ref CT
- Uniformity degraded in VMAT CBCT image
- Shading correction improves CBCT uniformity

CNR

Lower density region in phantom used to define contrast to noise ratio

$$CNR = \frac{Tissue_{mean} - Bone_{mean}}{Tissue_{SD}}$$

- Ref CT has best CNR
- CBCT during VMAT has lower CNR than standard CBCT
- Shading correction has little effect

HU accuracy

Maximum percentage difference between any CBCT ROI and corresponding CT ROI

- Both CBCTs have poor HU accuracy
- CBCT during VMAT has degraded HU accuracy
- Shading correction improves HU accuracy to ~1%

Summary

- CBCT images acquired during VMAT have lower quality than standard CBCT
- Increased noise, decreased CNR, decreased uniformity and increased streak artefacts
- Shading correction algorithm for CBCT improved uniformity and HU accuracy for VMAT and standard images

Further work

- Investigate why other authors found no effect on image quality
 - Probably due to kV imaging dose used (relative to MV scatter)
 - Clinical usefulness of beam-on images

